If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+3w-280=0
a = 4; b = 3; c = -280;
Δ = b2-4ac
Δ = 32-4·4·(-280)
Δ = 4489
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4489}=67$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-67}{2*4}=\frac{-70}{8} =-8+3/4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+67}{2*4}=\frac{64}{8} =8 $
| 3x=(4x-2) | | 2y+63/5=19 | | 7n+8=4n+23 | | (t+4)^2-12(t+4)+35=0 | | X=-2|y|+4 | | 38=p/5-4 | | 12x-16=90 | | $0.75-$36.00=n | | (2w-16)•w=9216 | | (z-1)^2-64=0 | | X+24-9x=-2 | | 13=x÷4 | | 2x-24=-10× | | 5y^2-5=4 | | (x-2)/3=-12 | | h=-16(2)^2+32(2) | | -19-x=-6(3×+6 | | P(x)=-40x^2+1920x-132000 | | -2(x-7)+4x=-(x-5) | | 22/3+y=41/4 | | 9+2x=x+4 | | 25^-3x=5^x+^5 | | 5k^2-11=-2k | | 3*3x+2x=10+6x | | z+2z+5z=16 | | -4x-12=112 | | 3q+q-3q-1=15 | | 6x+13=5-2(x+4) | | 6+x/3=2 | | 15r+10=-5 | | 5(6b-3)-8b=-147 | | X^2-6x-7=15 |